Areas of Expertise

High Precision / Complex Moulds

Intex specializes in producing extraordinarily small plastic parts that require extreme precision. We also produce small-size parts with micro features, mold in and around existing components, and create components using intricate lead frames or inserts.

High/Low Production Volume Moulds

A low cavity mold will have a shorter lead time and they are comparatively inexpensive, but in the end there will be a higher price per piece. This is generally most appropriate when the production quantities are low or for prototype moulds.

Going with a high cavitation mold will be more expensive at the onset, but the resulting price per piece will be lower due to economies of scale. This becomes more and more appropriate with higher production quantities.

Complex Valve Gate Multi-Cavity Tooling

Conventional valve-gated hot-runner systems are having a tough time handling these challenges. Opening and closing all the valve gates at the same time necessarily limits the degree of control over weld or knit lines, gas traps, localized packing, and unbalanced flow. Fortunately, there is a technique that provides almost unlimited control over which parts of a tool fill when and how fast. It’s called sequential valve gating, or SVG. Adding a programmed time sequence to the opening and closing of valve gates is not new technology, but molders are gradually gaining appreciation of its problem-solving prowess.

Multi-shot (Pick & Place / Rotary) Moulds

Multi-shot (or two-shot) molding is the process of physically bonding two different materials into one component within one manufacturing process. A proven technology that is used across many industries, multi-shot molding allows multiple materials to be injected into separate locations on the same mold. Different surfaces, even incompatible materials, can be securely bonded into a single component that is stronger and more durable than its two-piece counterpart.

Complex Aluminum Prototype Moulds

In other cases, aluminum tools are designed such that potential changes can still be made during the development process (e.g. if prototype iterations are to be made during injection molding). In general, aluminum tools are easier to machine than steel tooling and so iterative design changes are typically less burdensome.

Multi-Material Over-Molding

Multi-material molding is a common way of forming products that require characteristics one material alone just can’t provide. It’s often used to give added aesthetic appeal, stability, functionality, or marketability over traditional designs. Common examples include automotive taillights, toothbrush handle grips, seals, gaskets, and a variety of other products.

The unique needs of each application usually drive demand for multi-material parts, and molders have many options for production techniques. Since each multi-material application is unique, there’s no standard best method for success. Each molding solution must be tailored to meet the needs of the final product.

We Would Greatly Enjoy Working With You

HEAD OFFICE

230 Edward Street
Aurora, Ontario
Canada
L4G 3S8

Tel: 289-840-1095
Fax: 289-840-1091

Click Here For Directions